Regularity of Almost Periodic modulo Scaling Solutions for Mass-critical Nls and Applications

نویسندگان

  • DONG LI
  • XIAOYI ZHANG
چکیده

In this paper, we consider the Lx solution u to mass critical NLS iut + ∆u = ±|u| 4 d u. We prove that in dimensions d ≥ 4, if the solution is spherically symmetric and is almost periodic modulo scaling, then it must lie in H x for some ε > 0. Moreover, the kinetic energy of the solution is localized uniformly in time. One important application of the theorem is a simplified proof of the scattering conjecture for mass critical NLS without reducing to three enemies [17], [18]. As another important application, we establish a Liouville type result for Lx initial data with ground state mass. We prove that if a radial Lx solution to focusing mass critical problem has the ground state mass and does not scatter in both time directions, then it must be global and coincide with the solitary wave up to symmetries. Here the ground state is the unique, positive, radial solution to elliptic equation ∆Q − Q + Q 4 d = 0. This is the first rigidity type result in scale invariant space Lx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions

We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...

متن کامل

Nonlinear Schrödinger Equations at Critical Regularity

1 2 ROWAN KILLIP AND MONICA VIS¸AN Contents 1. Introduction 3 1.1. Where are we? And how did we get there? 6 1.2. Notation 9 2. Symmetries 9 2.1. Hamiltonian formulation 9 2.2. The symmetries 10 2.3. Group therapy 13 2.4. Complete integrability 14 3. The local theory 15 3.1. Dispersive and Strichartz inequalities 15 3.2. The ˙ H s x critical case 16 3.3. Stability: the mass-critical case 20 3.4...

متن کامل

1 6 Ju n 20 09 GLOBAL REGULARITY OF WAVE MAPS VI . ABSTRACT THEORY OF MINIMAL - ENERGY BLOWUP SOLUTIONS

In [16], [17], [18], the global regularity conjecture for wave maps from two-dimensional Minkowski space R to hyperbolic space H was reduced to the problem of constructing a minimal-energy blowup solution which is almost periodic modulo symmetries in the event that the conjecture fails. In this paper, we show that this problem can be reduced further, to that of showing that solutions at the cri...

متن کامل

A ug 2 00 9 GLOBAL REGULARITY OF WAVE MAPS VI . ABSTRACT THEORY OF MINIMAL - ENERGY BLOWUP SOLUTIONS

In [16], [17], [18], the global regularity conjecture for wave maps from two-dimensional Minkowski space R to hyperbolic space H was reduced to the problem of constructing a minimal-energy blowup solution which is almost periodic modulo symmetries in the event that the conjecture fails. In this paper, we show that this problem can be reduced further, to that of showing that solutions at the cri...

متن کامل

Regularity Properties of the Cubic Nonlinear Schrödinger Equation on the Half Line

In this paper we study the local and global regularity properties of the cubic nonlinear Schrödinger equation (NLS) on the half line with rough initial data. These properties include local and global wellposedness results, local and global smoothing results and the behavior of higher order Sobolev norms of the solutions. In particular, we prove that the nonlinear part of the cubic NLS on the ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009